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RESUMEN 

 

We provide a new simple procedure for selecting econometric models. It is based on 

a heuristic approach called genetic algorithms which are used to explore the universe of 

models made available by a general unrestricted model. This search process of the 

correct model is only guided by the Schwarz information criterion, which acts as the 

lost function of the genetic algorithm in order to rank the models. Our procedure shows 

good performance relative to other alternative methodologies. 
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 1. INTRODUCTION 

 

Data mining consists of the extraction of hidden predictive information from large 

databases through several partially automated research strategies. Initially, typical data 

mining activities consisted of selecting from alternative models with Stepwise 

regression programs based on significant t-coefficients and finding high R2, but it turns 

out that these procedures are not very useful as powerful selection criteria. Exclusive 

reliance on 2R and t-statistics as model choice criteria can easily lead to the selection of 

poor models. 

A seminal work in this area was published by Lovell (1983) which sought to 

evaluate the ability of some model selection methods to locate a single conditional 

equation from a large macroeconomic database, containing up to 40 regressors, 

including lags. Lovell found that the reduction in the cost of several procedures of 

modeling per se through data mining techniques, are bad because the modeling process 

has to be matched by a proportional increase in our knowledge of how the economy 

actually works.  Specifically, Lovell (1983) has shown that the data mining activities of 

a researcher erode the levels of significance in hypothesis tests when the researcher 

chooses to consider the best result in isolation.  

More recently the London School of Economics (LSE) approach presented a variety 

of competing econometric methodologies known as the general to specific modeling 

approach that amounts to systematized data mining. The art of model specification in 

the LSE framework is to seek out models that are valid parsimonious restrictions of the 

complete general model, and that are not redundant in the sense of having an even more 

parsimonious model nested within them that is also a valid restriction of the complete 

general model. So, the LSE approach permitted us to reconsider the model construction,   

emerging literature favorable to data mining activities. A seminal paper in that sense 

was that of Hoover and Perez (1999) (HP). HP developed a mechanical algorithm which 

mimics some aspects of the search procedures used by LSE practitioners, simulating 

general to specific selection for linear dynamic regression models, releasing the model 

selection strategy on residual diagnostic and hypothesis testing on coefficients. In the 

same direction Hendry and Krolzig (1999) suggested several alternative developments 

of Hoover and Perez algorithm, improving their work and supplying a computer 

automation of general to specific model selection procedure, which is commercially 
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available in the software package PcGets. Additional improvements were introduced by 

Hendry and Krolzig (2001).  

One important part of all previous papers on computer automation model selection 

is the search path for selecting the final model avoiding the search in all submodels 

which is prohibitively expensive when the number of potential regressors is large. The 

selection of variables procedure used on previous papers are based principally on the t-

statistic as in the Stepwise and backward elimination procedures, but in each step many 

diagnostic test are used to check models. This improves considerably the results. 

There are other researches which don’t center the model selection strategy on 

residual diagnostic and hypothesis testing on coefficients. That is the case with Hansen 

(1999) who provides a procedure using only on a simple information criterion. Also, a 

very recent paper by Perez-Amaral et al. (2003) uses out of sample performance 

measures for model selection. In this research we provide a new model selection 

procedure based on Genetic Algorithms guided by the Schwarz information criterion. It 

shows higher capability in model selection than in other methods known at the moment, 

performing as well as, if not better, than other alternative methodologies. 

The remainder of this paper has been organized as follows. In Section 2 the problem of 

selecting regressors is introduced. In Section 3 a brief review of genetic algorithms is 

presented, stressing their applications to the problem of selecting regressors. Section 4 

focuses on the empirical results showing that GASIC improves on previous procedures. 

Section 5 presents the conclusions. 

 

 

2. THE PROBLEM OF SELECTING REGRESSORS 

 

The contribution of our paper to model building is a powerful procedure of selecting 

regressors which permits a very good model selection performance using a simple 

information criterion. In building a multiple regression model, a crucial problem is the 

selection of regressors to be included. If a lower amount of regressors are selected in the 

model, the estimate of the parameters will not be consistent and if a higher amount is 

selected, its variance will increase. 

Given a dependent variable Y and a set of potential regressors 1,...., KX X , the 

problem is to find the best submodel of the form: 
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10 1 ....
Ki K iY X Xβ β β ε= + + + + ,  where  { } { }1 2, ...., 1, 2,....Ki i i K⊆  

 

There are 2K  possible submodels, a wide variety of selection procedures of all possible 

submodels have been proposed including Akaike Information Criterion [Akaike. 

(1973).], Mallows criterion [Mallows (1973)], Schwarz Information Criterion [Schwarz 

(1978)] or Hannan-Quinn Information Criterion [Hannan and Quinn, (1979)]. When K 

is high the computational requirements for these procedures can be prohibitive because 

the number of models becomes infeasible. For example, in the context of the Lovell 

research the number of possible models is 402 . 

In order to resolve this intractable problem, several heuristic methods addressed to 

restrict attention to a smaller number of potential subset of regressors are usually 

employed by practitioners. Such heuristic procedures, rather than search through all 

possible models, seek a good path through them. Some of the most popular are the 

Stepwise procedures, such as forward selection or backward elimination, sequentially 

include or exclude variables based on t-ratio statistic considerations [see Miller (2002) 

as a review of subset selection in regression].  

The Stepwise regression procedure starts off by choosing a model containing the 

single best regressor and then attempts to build up with subsequent additions of 

regressors one at a time as long as these additions are worthwhile. The order of addition 

is determined by using the t-statistics values to select which variable should enter next. 

After a variable has been added, the model is examined to see if any regressor should be 

deleted. The procedure terminates when all regressors not in the model are insignificant 

at a chosen significant level. Another procedure is the backward elimination. In this 

case, it starts off by estimating a model with all the potential regressors. Then the 

regressor having the smallest t statistics is removed from the insignificant regressors at a 

chosen significant level. The procedure continues until no regressors remaining in the 

model can be removed. 

Perhaps the more well known heuristic procedure used in Econometrics is the path 

search considered in Hoover and Perez (1999) which is devoted to avoiding the search 

in all submodels which is prohibitively expensive because it requires computing 240  

distinct submodels. The essential characteristic of the Hoover and Perez algorithm and 

its derivatives is the choice of a battery of tests (residual diagnostics and hypothesis 
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testing on coefficients), a measure of fit and a search path. So, the HP algorithm 

examines all models along the search path, selecting the best-fitting model among those 

models which are not rejected by the tests. The path search is an essential part of the HP 

algorithm. The HP search path is as follows: The variables of the general specification 

are ranked in ascending order according to their t-statistics. For each replication, 10 

search paths are examined. Each search path begins with the elimination of one of the 

variables in the subset with the 10 lowest (insignificant) t-statistics. The first search 

begins by eliminating the variable with the lowest t-statistic and re-estimating the 

regression. This re-estimating regression becomes the current specification. The search 

continues until it reaches a terminal specification. Multiple paths can lead to multiple 

models, so after all paths are explored; Hoover and Perez select the model that fits best.  

The HP search path has been improved by Hendry and Krolzing (1999, 2001), and 

Krolzig and Hendry (2001) proposing potential improvements that include trying all 

single-variable deletion starting points, and feasible block deletion. So, groups of 

variables are tested in the order of their absolute t-values, commencing with a block 

where all the p-values exceed 0.9, and continuing down towards the pre-assigned 

selection criterion, when deletion must become inadmissible. Besides, in addition to 

individual coefficients, blocks of variables constitute feasible paths. These additional 

tests operate like the block F-test along search paths. Then all paths that also commence 

with an insignificance t-deletion are explored. All of it increases the number of paths 

searched. If at the end of this procedure there is more than one model they are tested 

against their union, and finally, if there is a set of non- dominated terminal models they 

are selected using information criteria instead of using the standard error of regression 

as does HP algorithm. The descriptive of the Hendry and Krolzig basic algorithm and 

some recent changes can be found in Hendry and Krolzig (2003).  

Hansen (1999) suggested simplifying the HP model selection procedure, although 

proposing a search path too simple and not always suitable. Based on numerical 

evidence Hansen claims that simple and elegant Schwarz Information Criterion (SIC) 

work at least as well, if no better, than the complicated algorithm attributed to the LSE 

methodology 
Although the SIC looks like one of the most promising criterion for selecting 

models, Hansen’s reduction of the maximum number of regressors to ´ 10K =  is 

arbitrary and it can’t ever be justified in advance. The contribution of our research on 

model selection is to provide a new search path algorithm avoiding the main 
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inconvenience when the number K of potential regressors is large, proposing a heuristic 

approach called Genetic Algorithm (GA henceforth). This search process is only guided 

by the Schwarz Information Criterion (SIC), which acts as the lost function of the GA. 

So, we will designate the acronym GASIC to our selecting model procedure. GASIC 

permits exhaustive exploration of the most promising models of the search space 

without a cumbersome time consuming process and shows higher capability in model 

selection than other methods known at the moment, performing as well as, if not better, 

than complicated search algorithms. 

There exists a previous paper by Beenstock and Szpiro (2002) who proposed the use 

of GA to estimate dynamical nonlinear time series models from non stationary data. Our 

paper is devoted to the specific problem of variables selection in linear models and there 

are substantial differences with Beenstock and Szpiro (2002) at least in two aspects. On 

the one hand, Beenstock and Szpiro (2002) look for very general unrestricted functional 

forms. On the contrary, our research only selects linear models starting off a correct 

general specification like the approach of London School of Economics. So, Beenstock 

and Szpiro (2002) operate on strings representing functional forms using a variation of 

GA developed by Koza (1992) called Genetic Programming. In contrast, we use the 

binary version of GA suggested originally by Holland (1975), with the end of selecting 

explanatory variables, providing a regressors selector algorithm by linear models. 

Therefore the Beenstock and Szpiro (2002) procedure is more general because in 

addition to searching over lags and variables, they search for functional forms. In 

contrast, GASIC is devoted to the problem of selecting linear models although it can be 

extended to the framework of semi parametric models. GASIC is shown as a more 

parsimonious and robust tool able to obtain predictions as much as undertaking a simple 

structural analysis. It is the fixed and closed linear form of our model which makes 

possible the structural analysis. 

On the other hand, the Beenstock and Szpiro (2002) algorithm does not generally 

converge towards a unique true model and the result generally depends upon the 

reseeding of the initial population. However, the closed linear functional form in 

GASIC shows higher robustness to reseeding in the final solution, as may be seen in our 

simulations.  
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3. SELECTING REGRESSORS VIA GENETIC ALGORITHMS 

 

The new approach for selecting regressors proposed in this paper is based on an 

heuristic optimization procedure called GA. Before moving on to explain our method, 

let’s summarize the main aspects of GAs. GA are a class of optimization technique, 

based on principles of natural evolution developed by Holland (1975) which try to 

overcome problems of traditional optimization algorithms, like no continuity or 

differentiability of the loss function.  

A GA starts with a population of randomly generated solution candidates, which 

apply the principle of fitness to produce better approximations to optimal solution. 

Promising solutions as represented by relatively better performing solutions, are 

selected and breeding them together through a process of binary recombination referred 

to as crossover inspired by Mendel’s natural genetics. The objective of this process is to 

generate successive populations solutions that are better fitted to the optimization 

problem than the solutions from which they were created. Finally, random mutations are 

introduced in order to avoid local optima.  

GA have been applied to a variety of problems in a diverse range of fields; they are 

most effectively used in situations where the space of possible solutions to an 

optimization problem is too large to be handled efficiently by standard procedures, or 

when it is in some sense badly behaved e.g. non-differentiable, or possessing multiple 

local extrema [See Goldberg (1989) as a general reference]. 

Although the use of GA has been generalized on a variety of problems in a diverse 

range of fields, applications of GA in econometrics are scarce, in this sense the work of 

Dorsey and Mayer (1995) stands out where several optimization problems in 

econometric estimation were carried out. 

Our model selection procedure for real data may be resumed as follows: 

a) Check the congruence of the general unrestricted model using a battery of mis-

specification tests as Hendry and Krolzig (2001) point out. Empirically, the 

general unrestricted model would be revised if such tests were rejected. In our 

results we omitted this step because we work with simulated data bases and our 

contribution refers to the following step b.  

b) Select a submodel of the general unrestricted model using GASIC where the lost 

function which ranks models is the Schwarz Information Criterion (SIC). 
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The basic steps in constructing GASIC are the followings: 

Step 1. Initial Population: Generating a population of random solutions to the 

optimization problem usually called individuals. These solution candidates, also called 

chromosomes, are usually represented by vectors, all of the same length, consisting of 

binary digits. When the parameters are naturally discrete the binary GA fits nicely. In 

K-dimensional optimization problem, a chromosome is written as an array with 1xK 

elements so that  

[ ]1 2, ,......, Kchromosome p p p=  

where , 1....ip i K=  are a binary variable taking values zero or one, and K is the 

number of regressors. For instance, if K=5 and the complete set of regressors (general 

model) are { 54321 ,,,, XXXXX  } the chromosome (1,0,1,0,1) means that the subset of 

regressors considered is { 531 ,, XXX }. Therefore, our algorithm begins with the random 

selection of an initial population of binary chromosomes which represents random 

approaches of the General Unrestricted Model. These chromosomes act as seeds of the 

process. Nevertheless, the algorithm is robust in reseeding as we will show in the 

empirical results. In the empirical results developed in section 4, the number of 

chromosomes of the initial population will be 200. With the increase of this number of 

chromosomes, results are only improved marginally. 

Step 2. Ranking: For every chromosome, the lost function is calculated. According 

to Hansen (1999) and Campos et al. (2003), we have considered a lost function 

provided by the Schwarz Information Criteria (SIC), 

 

2 log( ) ( )ˆ( ) log ( ) , 2T k mSIC m m c c
T

σ= + =                                    (1) 

where k is the number of “ones” in each chromosome m, which represent the selected 

regressors, and T is the sample size. So, one solution is considered better fitted than 

another if the value of SIC of the first is lower. 

The model selection based on minimizing the SIC is consistent, having the 

advantage that incorrect models are never selected asymptotically when the sample size 

diverges away from K. Also the correcting factor 2=c  avoids the possibility of over-

parameterized models being asymptotically selected with positive probability, as 

Hansen (1999) pointed out. 
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The profitability of using SIC on selection models is discussed in Campos et al. 

(2003) who find that the significant levels embedded in the PcGets algorithm coincide 

in very large samples with those implicit in the SIC. A given value for c determines the 

implicit significance level for the SIC as a function of T and K. So, Choosing 1c >  is 

tantamount to choosing a more stringent p-value.  

Step 3. Natural Selection: In order to simulate the process of Darwin’s natural 

selection, chromosomes are ordered on the basis of their lost function and the worst half 

of individuals are discarded (deleted).The subpopulation that we save is usually called 

the mating pool. So, in our problem we delete those models with high SIC-statistics. 

Step 4. Pairing: Couples of chromosomes are selected from the mating pool in order 

to produce two new offspring solutions. Pairing chromosomes in a GA can be carried 

out in a variety of methods. In our case we have carried out a random pairing process 

which assigns equal probability to every chromosome. 

Step 5. Mating: This operation creates new offspring from the set of regressor´s 

subset selected in the pairing process. This process is called genetic recombination or 

crossover. It is frequent to apply the commonly used single point crossover which 

consists in randomly pairing chromosomes surviving the selection process, and 

randomly, selecting a break point at a particular position in the binary representation of 

each chromosome. This break point is used to separate each vector into two subvectors. 

The two subvectors to the right of the break point are exchanged between the two 

vectors, yielding two new chromosomes. For instance, let’s consider a couple of 

chromosomes called mother and father: Mother=(0,1,0|,1,0) , Father =(1,0,1,|0,1), If the 

break point is selected after the third position in every chromosome, two new 

chromosomes are created through the parents: Offspring1=(0,1,0|,0,1) and 

Offspring2=(1,0,1,|1,0). Every one inheriting part of the parents` genetic material, which 

means that if we recombine the subset of regressors { }42 , XX  and { 531 ,, XXX  }, we 

will obtain the offspring { }52 , XX and { }431 ,, XXX . 

Step 6. Mutations: Mutation is the process of randomly changing in the string of 

binary elements in a chromosome. Mutations prevents the GA from converging too 

quickly on a local minimum of the lost function. If the algorithm is trapped in a local 

optimum, the mutation randomly shifts the solution. So, a mutation occurs by randomly 

selecting a particular element in a particular vector. If the element is a “one” it is 

mutated to “zero”, and vice versa. This occurs with a very low probability in order not 
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to destroy promising areas of search space. In the empirical results the rate of mutation 

is 0.5%. 

Step 7. Convergence: Come back to Step 2 and repeat sequentially this process 

getting successive generations of solutions until some convergence criterion is satisfied. 

The stopping criterion is usually satisfied if either the population converges to a unique 

solution or a maximum number of predefined generations are reached. In this paper we 

selected an intermediate stopping criterion consisting of stopping when the ten best 

behaved solutions of a generation in the GA are repeated. Additionally, in order to 

avoid worsening the solution, except in the first sequence of the algorithm, we proceed 

in step 3 as follows: In the case where the best behaved chromosome in (i)-th generation 

isn’t as well as the best behaved chromosome in the (i-1)-th generation, this last 

generation will come to form the mating pool (i+1)-th generation of the GA.  

 

 

4. EMPIRICAL RESULTS 

 

In order to investigate the relative performance of GASIC we provide two different 

scenarios of data with different sample size: The Hoover and Perez (1999) 

macroeconomic data base and several of the data generating processes in the 

experiments simulated by Perez-Amaral et al. (2003). All of our calculations have been 

provided using MATLAB code. 

 

4.1 Empirical results on Hoover and Perez (1999) data base. 

 

We used Lovell’s database modified by Hoover and Perez (1999) consisting of 

macroeconomics variables covering various measures of real activity, government fiscal 

flows, monetary aggregates, financial markets yields, labor market conditions and a 

time trend. We also considered the eleven specifications constructed by Hoover and 

Perez (1999) (Table 3). The HP search algorithm is composed of a battery of seven 

well-known residual diagnostics and hypothesis testing on coefficients and by a 

particular search path based on Stepwise consideration, which acts as an elimination 

procedure of variables in the general specification. 
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Although Hoover and Perez (1999) support the view that the particular search path 

mechanism plays a relatively small role in determining the search algorithm, we will see 

that our search procedure affects considerably the results. To assess the general to 

specific approach we construct a specification search for 1000 replications of the eleven 

specifications listed by HP. We have also distinguished five degrees of success of our 

algorithm in order to focus on the question of whether or not the true specification is 

nested within the final specification. The five Hoover and Perez (1999) categories that 

we reproduce are: Category 1 (Final=True) where the true specification is chosen. 

Category 2 ),( TF SERSERFinalTrue <⊂ 1, where the true specification is nested in the 

final specification and the final specification has the lower standard error regression. 

Category 3 ),( TF SERSERFinalTrue >⊂ , where the true specification is nested in the 

final specification and the true specification has the lower standard error regression. 

Category 4 ),( TF SERSERFinalTrue <⊄ , where an incorrect specification is chosen, 

the true specification is not nested in the final specification and the final specification 

has a lower standard error of regression than the true specification. Category 5 

),( TF SERSERFinalTrue >⊄ , where an incorrect specification is chosen, the true 

specification is not nested in the final specification, and the true specification has a 

lower standard error of regression that the final specification. 

 In Table 1 we present the results of specification searches for 1000 replications2 of 

eleven specifications obtained by using GASIC. Also, all calculations carried out with 

SIC as a measure of goodness of fit in the GA have been repeated using the F statistics 

as a measure of goodness of fit. These results are not presented in this paper because 

they are inferior to those obtained using the SIC. In order to compare, we also present 

the HP and Stepwise results at 1% nominal size in Table 2 and Table 3, respectively. 

We decided to include the Stepwise results in order to enhance how our search path 

algorithm based on GA, dramatically improves it. 

 Tables 1 and 2 permit the comparison between GASIC with HP, for a nominal size 

of 1% (their best results). Looking at these tables we conclude that: 

 

                                                 
1 FSER  refers to the standard error regression for the final specification and TSER  refers to that for the 
true specification. 
2 These 1000 replications refer to 1000 reseedings of the initial population of chromosomes in the GA. 



Table 1. Specification searches using GASIC. (GA with lost function: SIC with c=2) 
True Model 1 2 3 4 5 6 6A 6B 7 8 9 Means 
             
Category 1 93,3 93.0 78.9 91.7 93.3 0.1 93.4 93.8 92.7 93.3 0.0 68.85
Category 2 6.7 7.0 5.6 8.3 6.7 0.0 5.7 6.1 7.2 6.7 0.0 5.45
Category 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Category 4 0.0 0.0 3.0 0.0 0.0 6.4 0.6 0.1 0.1 0.0 7.7 1.63
Category 5 0.0 0.0 12.5 0.0 0.0 93.5 0.3 0.0 0.0 0.0 92.3 18.05
             
True variables  0 1 2 1 1 2 2 2 3 3 5  
Average rate of selected variables  0.08 1.08 1.95 1.11 1.08 1.07 2.07 2.07 3.08 3.07 3.12  
Average rate of true variables --------- 1.00 1.84 1.00 1.00 1.00 1.99 2.00 3.00 3.00 3.02  
Average rate of insignificant variables 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01
Average rate of falsely significant variables 0.07 0.08 0.10 0.09 0.08 0.07 0.07 0.07 0.08 0.07 0.08 0.08
Type I error (True Size) 0.17% 0.19% 0.26% 0.24% 0.19% 0.18% 0.19% 0.17% 0.22% 0.18% 0.24% 0.20
Power -------- 100.0% 92.2% 100.0% 100.0% 50.1% 99.6% 100.0% 100.0% 100.0% 60.4% 90.23

Frequency true variables included (percent) 
True Model 1 2 3 4 5 6 6A 6B 7 8 9  

True variables number            
3  100 0.1 99.1 99.9 100 0.0

11  100 100 100 100 100 100
21   100 1.2
29   99.9 99.9
37  100 94.8  100 100 100
38  89.6  

Hoover and Perez (1999) used 40 dependent variables as candidates to take the part of the real model, and these variables are correlatively numbered. The number of the 
variables appearing in the table are the true variables used in the models´ generation. 
As in Hoover and Perez (1999) we define: Size=falsely significant variables /(total candidates-possible true variables) and Power = 1-(possible true variables-true variables 
selected)/possible true variables. 
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Table 2. Specification searches using Hoover Perez Algorithm (at 1% nominal size) 
True Model 1 2 3 4 5 6 7 8 9  Means 
           
Category 1 79.9 0.8 70.2 80.2 79.7 0.7 24.6 78.0 0.8 46.1
Category 2 20.1 99.2 19.0 19.6 20.2 0.1 57.4 21.7 1.3 28.7
Category 3 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.2 0.6 0.1
Category 4 0.0 0.0 3.7 0.1 0.0 56.3 13.0 0.1 77.0 16.7
Category 5 0.0 0.0 6.9 0.0 0.0 42.9 5.0 0.0 20.3 8.3
           
True variables  0 1 2 1 1 2 3 3 5  
  
Average rate of true variables 1.00 1.89 0.99 1.00 1.01 2.82 3.00 2.86
Average rate of insignificant variables 0.01 0.07 0.04 0.05 0.04 0.02 0.11 0.05 0.06 0.05
Average rate of falsely significant variables 0.28 2.24 0.35 0.29 0.28 0.24 1.12 0.33 1.14 0.70
Type I error (True Size) 0.7% 5.7% 0.9% 0.8% 0.7% 0.6% 3.0% 0.9% 3.2% 1.8%
Power  100.0% 94.7% 99.9% 100.0% 50.3% 94.0% 99.9% 57.3% 87.0%
True Model 1 2 3 4 5 6 7 8 9  

True variables number(*)          
3  100 0.8 100 1.5

11  99.9  99.8 100 100
21   99.9 1.4
29   82.0 83.5
37  100 95.7  100 99.9 99.9
38  93.6  

Hoover and Perez (1999) used 40 dependent variables as candidates to take the part of the real model, and these variables are correlatively numbered. 
The number of the variables appearing in the table are the true variables used in the models´ generation. 
As in Hoover and Perez (1999) we define: Size=falsely significant variables /(total candidates-possible true variables) and Power = 1-(possible true 
variables-true variables selected)/possible true variables. 
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Table 3. Specification searches using Stepwise (at 1% nominal size) 
True Model 1 2 3 4 5 6 6A 6B 7 8 9 Means 
             
Category 1 69.4 72.3 68.2 75.1 72.9 1.1 74.7 75.8 71.9 29.5 0.0 55.54
Category 2 30.6 27.3 25.8 24.9 27.1 0.5 25.3 24.2 27.0 11.2 0.0 20.35
Category 3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.6 0.0 0.19
Category 4 0.0 0.0 3.1 0.0 0.0 27.9 0.0 0.0 0.0 58.6 98.6 17.11
Category 5 0.0 0.0 2.9 0.0 0.0 70.5 0.0 0.0 0.0 0.1 1.4 6.81
             
Number of true variables  0 1 2 1 1 2 2 2 3 3 5  
Average rate of selected variables  0.37 1.33 2.28 1.30 1.31 1.35 2.30 2.28 3.33 2.61 3.43  
Average rate of true variables -- 1.00 1.94 1.00 1.00 1.02 2.00 2.00 3.00 1.83 3.06  
Average rate of insignificant variables -- -- -- -- -- -- -- -- -- -- --  
Average rate of falsely significant variables 0.37 0.33 0.34 0.30 0.31 0.34 0.30 0.28 0.33 0.77 0.36 0.37
Type I error (True Size) 0.93% 0.84% 0.89% 0.76% 0.80% 0.88% 0.80% 0.75% 0.89% 2.09% 1.03% 0.97
Power -- 100% 97% 100% 100% 50.8% 100% 100% 100% 60.87% 61.26% 86.99

Frequency true variables included (percent) 
True Model 1 2 3 4 5 6 6A 6B 7 8 9  

True variables number            
3  100 1.6 100 100 100 3.9
11  100 100 100 100 100 100
21   41.3 2.4
29   100 100
37  100 97.9  100 41.3 100
38  96.1  

Hoover and Perez (1999) used 40 dependent variables as candidates to take the part of the real model, and these variables are correlatively numbered. The number of the 
variables appearing in the table are the true variables used in the models´ generation. 
As in Hoover and Perez (1999) we define: Size=falsely significant variables /(total candidates-possible true variables) and Power = 1-(possible true variables-true variables 
selected)/possible true variables. 



 

(1) Except in models 6, and 9, the GASIC improves the identification of true model 

(Category 1) with respect to HP algorithm. So, as it is possible to observe, the 

performance of GASIC algorithm is clearly superior with respect to HP. Besides, we 

didn’t eliminate bad specified models, while the HP algorithm does, that is if the 

general specification fails more than one mis-specification test, the current replication is 

eliminated and the search begins again with a general specification of a new replication. 

On average terms, the HP search path has a 46.1% of success meanwhile for GASIC the 

success increases by up to 63.9 % (excluding models 6A and 6B). With respect to 

models 6 and 9, both procedures fail considerably in getting the three first categories. 

(2) For model 6, both procedures (GASIC and HP) provide the same bad results, giving 

a 0.7% of success in identifying the true model for HP and 0.1% for GASIC. (3) In 

models 9 the HP algorithm improves the identification of the true model with respect to 

GASIC because the GASIC never identifies the true model, meanwhile the HP does so 

0.8% of the time. Besides, HP is also superior to GASIC in putting the majority of 

results in category 4. (4) The GASIC algorithm reduces the number of false significant 

variables, which causes the GASIC to have type I error inferior to HP. So, in model 1 

type I error is reduced from 0.7% in HP to 0.17% in the GASIC, in model 2 from 5.7% 

to 0.19%; in model 3 from 0.9% to 0.26%; in model 4 from 0.8% to 0.24%; in model 5 

from 0.7% to 0.19%; in model 6 from 0.6% to 0.18%; in model 7 from 3.0% to 0.22%; 

in model 8 from 0.9% to 0.18%; and, finally, in model 9 from 3.2% to 0.24%. 

 Now let’s show how our GASIC procedure improves the variable selection provided 

by the application of Stepwise algorithm at nominal size 1% (the results provided by 

Stepwise at nominal size 5% are not included because they are worse than nominal size 

1%). The results of model identification using Stepwise are shown in Table 3. 

Comparing these results with those obtained by GASIC in Tables 1 we see that GASIC 

improves considerably Stepwise, with the only exception of model 6, where the 

performance of both procedures are equally bad. On average, the GASIC identifies the 

true model in 68.85% of the time, and Stepwise only does so on 55.54% of the time. 

Observe that Stepwise tends to over-identify models, where the selection of false 

significant variables is very high. All of it is corroborated noting the type I error 

produced in both procedures. So, from a type I error of 0.97% in the Stepwise (the 

expected would be 1%) a type I error of 0.20% is obtained for the GASIC. 
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 Furthermore, it is possible to compare our results with Hansen (1999). Hansen’s 

selection regressors method starts with the most general model and applies stepwise 

backward elimination until just a manageable set of 'K regressors remains (in his 

research ' 10K = ). At this point, sequentially estimate all 102 models which can be 

formed from these 10 regressors. For each regression which has been run on this search, 

calculate and store the SIC. The model with the smallest SIC is the selected model. 

Hansen (1999) applied this method to HP database and only provided us with the HP 

category 1, showing the percentage of searches for which the selected specification is 

the true model (Hansen’s Table 1). His results work better than HP’s and are similar to 

our own. Perhaps the small difference could be explained because we don’t eliminate 

any general unrestricted models when mis-specification tests fail like HP (and perhaps 

Hansen) do. 

 Nevertheless, it is necessary to point out that Hansen’s method is not a general 

procedure because the number 'K  of manageable regressors, before sequentially 

estimating all '2K models, is never known in advance. So, it is not safe to suppose, as 

Hansen did, that ' 10K = . The number of true regressors is crucial in the data mining 

framework and it is not easy to provide an estimator of k. In the HP database Hansen 

has no identification problems because the number of independent variables in all 

models is inferior to 6 and in most models this number is between 1 and 3. So, when 

Hansen’s procedure reduces the number of variable candidates to regressors from 40 

down to 10, using Stepwise backward, it is guaranteed with a high probability that the 

true model contains the dependent variables inside the 10 previously selected variables. 

Starting with these 10 pre-selected variables, it is possible to estimate all potential 
102 1024= models which are evaluated using SIC criterion. Nevertheless, this procedure 

becomes useless when the model that we want to identify has a high number of 

independent variables. For instance if 30 of 60 variables were the number of true 

variables, and Hansen’s method was applied with ' 30K ≥ , it would be necessary to 

estimate at least 302 1,073,741,824 = models, which is impracticable. However, GASIC 

is able to deal with this problem without difficulties. For N=1000 and 2 0.50R =  the 

percentage of successful correct retrieval is 44.9%, while for 2 0.75R =  the percentage 

of successful correct retrieval is 96.9%. Of course, when both the sample size and the 
2R  decrease, these results get worse.  
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 It is not possible to compare directly the percentages of successful retrieval of the 

1,2,7, and 9 models by HP, and by GASIC and PcGets in the version of Hendry and 

Krolzig (1999) given in their Table 2, because they used a sample size T=100 while the 

HP’s sample size data base is 139. It could also be interesting to compare GASIC with 

the latest versions of PcGets by Hendry and Krolzig (2001, 2003). 

 We have also introduced a battery of mis-specification tests in the mating process of 

the GA, in order to discard bad specified models. Nevertheless, at least in the current 

data base, using mis-specification tests it is only necessary to guarantee the congruence 

of the general unrestricted model, but it is hardly useful in the process of selecting the 

correct model proposed by GASIC. So, mis-specification tests don’t improve the 

percentage of successful retrieval of DGPs but, in general, it diminishes the number of 

generations of GASIC in getting the optimum model. 

 

4.2 Empirical results on several experiments simulated by Perez-Amaral et al. (2003) 

 

 Perez-Amaral et al. (2003) proposed a flexible tool for model building based on the 

Relevant Transformation of the Inputs Network Approach called RETINA. The basic 

idea of this new procedure is to use out of sample performance measures for model 

selection. These authors designed several data generating processes and varied several 

parameters, such as the overall sample size T, the amount of correlation ρ  among 

original variables X and the 2R . 

In order to proceed to a direct comparison with our methodology, we are only 

concerned with the fist four of the seven models simulated by Perez-Amaral et al. 

(2003). With several transformations, our algorithm is also able to deal with sparse 

regressors, outliers and structural break. Nevertheless, to keep matters simple, we prefer 

only to consider the simplest version of our algorithm. So, we compare GASIC 

capabilities in the following Data Generation Processes (DGPs):  

 DGP1. Linear: 0 1 1 2 2 1,....,i i i iy x x u i Tα α α σ= + + + = , where 0 1 2 1α α α= = = , 1ix  

and 2ix  are jointly normal with correlation ρ  between regressors equal to 0.5. The error 

term iu  is i.i.d. N(0,1) and σ  is calibrated to achieve an average 2R of the resulting 

estimated equations across replications equal to 0.25, 0.50 and 0.75, respectively. 
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 DGP2. Ratio: 1
0 1

2

1,....,i
i i

i

xy u i T
x

α α σ= + + = , everything else is as in DGP1 

except that 0.5ρ =  only. 

 DGP3. Product: 0 1 1 2 1,....,i i i iy x x u i Tα α σ= + + = and everything else is as in 

DGP1. 

 DGP4. Linear with binary regressor: 0 1 1 3 3 1,....,i i i iy x x u i Tα α α σ= + + + = , with 

3 1α =  and 3ix  is a discrete explanatory variable which takes the value 1 with 

probability 0.5 and 0 otherwise, and everything else is as in DGP1. 

 As in RETINA for DGP1 to DGP3 we have considered 24 candidate regressors 

(excluded the constant) constituted by the transformations of the variables included in 

the DGP (each of which is obtained as , , 1,0,1; , 1, 2,3ih ilX X h lα β α β = − = ) and of an 

additional irrelevant variable with the same distribution and correlation as 1ix  and 2ix . 

For DGP4 we considered 17 candidate regressors for avoiding repetitions of outcomes 

and divisions by zero. Percentages of successful retrieval of the DGPs by RETINA and 

by GASIC for different DGPs, sample sizes and 2R s  are reported in Table 4. 

 As we can see in Table 4, GASIC outperforms RETINA in twenty five out of thirty-

five cases, which are signaled by an asterisk in Table 4, and in one case they behaved 

equally. Several patterns emerge in Table 4. Both procedures are asymptotically similar; 

that is, when the sample size is high the percentage of successful retrieval of the DGPs 

are similar. Nevertheless, GASIC outperforms RETINA for small sample sizes and for 

DGPs with small 2R . Finally, it is necessary to observe that the failures in GASIC 

retrieving the DGPs are always produced because the GA selects models with the best 

SIC, although these models are not necessarily the correct models. So, in most cases, 

the GA works perfectly in the optimization problem and any failure is associated with 

the SIC as model selection criterion. 



 

Table 4: Percentages of successful retrieval of the DGPs by GASIC and RETINA for different DGPs*, sample sizes and 2R s  
DGC Sample size 2 0.25R =  2 0.5R =  2 0.75R =  
  GASIC RETINA GASIC RETINA GASIC RETINA 
1: linear 100 

200 
1000 

10.7 
52.9  * 
99.6  * 

22.8 
42.8 
98.6 

88.2  * 
97.9  * 
99.4  * 

72.9 
93.9 
99.1 

94.5 
97.0 
99.4  * 

97.7 
98.3 
99.1 

2: ratio 100 
200 
1000 

79.2  * 
85.3  * 
94.5  * 

39.9 
49.8 
73.6 

86.2  * 
90.8  * 
96.5  * 

72.6 
82.2 
94.7 

90.0 
94.1 
98.2 

93.7 
97.4 
99.1 

3: product 100 
200 
1000 

92.2  * 
97.5  * 
99.0 

75.9 
94.2 
99.5 

94.8 
97.9 
99.4 

96.2 
99.1 
99.4 

93.6  * 
97.5 
99.6  * 

98.6 
99.1 
99.2 

4: linear with binary 
regressors 

100 
200 
1000 

22.8  * 
55.1  * 
99.4  * 

9.8 
24.6 
89.5 

80.2  * 
98.1  * 
99.7  * 

43.4 
72.6 
95.7 

96.3  * 
97.9  * 
99.4  * 

88.1 
95.5 
95.9 

The asterisks correspond to the simulations where GASIC outperforms RETINA 
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5. CONCLUSIONS 

 

 In this paper, we have developed the GASIC model selection procedure. The 

principal contribution of GASIC is a selection of variables method which improves 

considerably the Stepwise and backward elimination algorithms. It is based on a 

heuristic optimization method called genetic algorithms which are used to explore the 

universe of models made available by a general unrestricted model. Once we have 

checked the congruence of the general unrestricted model using a battery of mis-

specification tests, the search process of the true model is only guided by the Schwarz 

information criterion, which acts as the lost function of the genetic algorithm in order to 

rank the models. So, GASIC permits exhaustive exploration of the most promising 

models of the search space without a cumbersome time consuming process. 

 We strongly agree with Hansen (1999) who emphasized the possibilities of SIC as a 

power and simple model selection procedure, which is easy to implement in 

applications, performs at least as well, if not better, than complicated search algorithms. 

Nevertheless, our paper provides an important improvement in the search algorithm 

with respect to Hansen’s. The drastic reduction of the number of variables practiced in 

Hansen (1999), who supposes a maximum of ten variables in the model is, in general, 

an incorrect reduction of the models space and a false assumption. So, GASIC is a 

speed efficient regressors selector that improves considerably the classic Stepwise or 

backward elimination. 

 We have also introduced a battery of mis-specification tests in the mating process of 

the GA in order to discard bad specified models. Nevertheless, at least in the current 

data base, using mis-specification tests it is only necessary to guarantee the congruence 

of the general unrestricted model, but it is hardly useful in the process of selecting the 

correct model proposed by GASIC. So, mis-specification tests don’t improve the 

percentage of successful retrieval of DGPs but, in general, it diminishes the number of 

generations of GASIC in getting the optimum model. 

 We have compared GASIC with recent developments on model selection procedure 

like Hoover and Perez (1999) based on the general to specific approach of the LSE and 

like RETINA procedure by Perez-Amaral et al. (2003) who uses out of sample 

performance measures for model selection. GASIC has a good performance with respect 

to Hoover and Perez (1999). Comparing GASIC with RETINA, both procedures are 

asymptotically similar; that is, when the sample size is high, the percentage of 
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successful retrieval of the DGPs is similar. Nevertheless, GASIC usually outperforms 

RETINA for small sample sizes and for DGPs with small 2R . Furthermore, it could also 

be interesting to compare GASIC with the latest versions of PcGets like Hendry and 

Krolzig (2001, 2003). 

 Besides, our methodology may be employed in selecting correct models with large 

number of variables on a potentially large set of variables of interest. 

 Finally, we observe that the most failures of GASIC retrieving the DGPs can only 

be attributed to the SIC and not to the GA. So, GASIC frequently finds the final models 

which improve the true model in the sense that they are better behaved with respect to 

the lost function provided by the SIC. In this sense, the GASIC works well and it is not 

responsible for the lack of success in getting the correct model. It opens the problem of 

which could be the suitable lost function in the very badly behaved models of Hoover 

and Perez (1999) data base.   

 Lastly, as a final general conclusion, GA opens new perspectives of data mining 

research which may also be considered in other related fields.  
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